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!
Xpi= L PX Ppi(x) dx; p=123; i=1,..,N,(11f)

Gr22imn = S; EA ¢1(X)b3m (X)$3n(x) dx

i=1,..,N; mn=1,..N, (11g)
Gr33imn = S; EA ¢ii(x)¢ém(x)¢§n(x) dx

i=1,..,Ny mn=1,.,N; (11h)
Eppaqiirt = L[) EA ¢;:(x),;(x )¢(;k (*X)pq(x) dx

Pg =23 ij=1..Ny; kl=1,.,N, (11i)

Results and Discussion

The spin-up problem in Ref. 1 is also considered here to
study the effect of nonlinear structural terms. The beam is
initially at rest and an angular velocity is given along the a3
axis at the base. Only the in-plane motions are excned in line
with the assumptions. The beam parameters are as follows
E 68,950,000,000 N/m?, p = 1.2’ kg/m?, A = 0.0004601 m?,
= 0.0000002031 m*, and I =10 m. The angular velocity

hlstory is taken to be identical with that in Ref. 1

15 27t
wsy = 6/15 [ 2—s1n F] rad/s, O0=<t=<15s
= 6 rad/s, t=15s (12)

The transverse mode shapes are taken as the fixed-free
nonrotating eigenfunctions of a uniform beam under trans-
verse vibration, whereas the longitudinal modes are taken as
the eigenfunctions of a fixed-free uniform rod under longitu-
dinal vibrations. The axial and transverse motions are
represented by one and three modes, respectively. The axial
and bending responses of the tip of the cantilever beam
resulting from the formulation presented in this Note are
shown in Figs. 2a and 2b, respectively. The solid curves
correspond to the analysis of this Note, where all higher-order
terms have been rétained, and the dashed curves refer to the
situation where all second- and third-order terms are elimi-
nated. In the nonlinear analysis, the transverse deflection
grows initially in a direction opposite to that of the base
motion. After reaching a maximum displacément, the tip goes
back toward the equilibrium position and settles down to a
steady oscillation. The nonlinear stiffening action in the beam
prevents it from going unstable, and the very absence of such
terms causes the linear beam to diverge away from the
equilibrium point. A foreshortening effect is observed in the
axial response (Fig. 2a) when the beam is started from rest.
The final axial response in the case of nonlinear analysis is a
steady oscillation about a nonzero equilibrium point that
corresponds to the steady-state axial displacement under the
centrifugal force field. The effect of centrifugal stiffening has
been studied by numerous investigators in the past, and a brief
discussion on the subject can be found in Ref. 4. Likins et al.’
have assumed steady-state axial displacements and moderate
rotations to obtain the stiffening effect. Vigneron® has
assumed foreshortening of the beam and uses Hamilton’s
principle to show that the centrifugal stiffening terms arise
from the kinetic energy terms. In Ref. (4), Kaza and Kvaternik
have observed that foreshortening of the beam need not be
considered explicitly if terms up to fourth order are retained in
the energy terms. The present formulation has taken such an
approach and does not assume any a priori kinematical
restriction on the displacement field. The axial and transverse
displacement fields have been chosen to be independent of
each other, and the foreshortening of the beam is a conse-
quence of the imposed base motion.
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Conclusions

In this Note, we have formulated the problem of a
cantilever beam attached to a moving support by using Kane’s
method. The formulation is valid for large displacements, and
all geometric nonlinéarities have beén considered in the
strain-displacement relations. The method has been validated
by studying the stability characteristics of a beam under the
spin-up maneuver. It has been demonstrated that structural
nonlinearities play a major role in the transient response
characteristics and they cannot be 1gn0red
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Gravitational Moment Exerted
on a Small Body by an Oblate Body

Carlos M. Roithmayr*
NASA Johnson Space Center,
Houston, Texas

Introduction

HE gravitational forces and moments that act on an

orbiting body are well récognized as important influences
on the motion of such a body. This paper illustrates a method
for finding an analytic expression for the moment about a
body’s mass center. produced by gravitational forces.

Expressions for the gravitational moment exerted on a body
by a sphere (or particle) appear in numerous places, including -
Ref. 1. The equation in Ref. 1 is particularly simple because it
does not express the gravitational moment in terms of a
particular unit vector basis. This simplicity is made possible by
expressing the gravitational moment in terms of a unit vector
and a dyadic. One can implement the equation by expressing
the unit vector and dyadic in any convenient basis.

In his Engineering Note, Glandorf? seeks and develops a
method for obtaining the gravitational moment exerted by
bodies other than spheres. Kane, et al.! suggest an alternative
to the method proposed by Glandorf and simplified by
Wilcox.? Use of the method from Ref. 1 can lead to vector-
dyadic expressions that are simple in appearance and basis-
independeht.

As an example of the use of the method suggested in Ref. 1,
this paper derives an expression for the gravitational moment
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Assertion

~
n

Fig. 1 Small body in the presence of an oblate spheroid.

exerted by an oblate spheroid. Roberson* has the objective of
developing an equivalent expression. However, Roberson’s
work quickly becomes complicated because the derivation is
tied to a particular basis from the outset.

Also included is an example in which the equation for
gravitational moment exerted by an oblate spheroid on a body
the size of a space station is numerically evaluated.

Assertion

Figure 1 shows a small body B in the presence of body E. The
distance between the mass centers B* and E* of B and E is
assumed to exceed the greatest distance from B* to any point
of B. Body E is assumed henceforward to be an oblate
spheroid. The system of gravitational forces exerted by E on B
produces a moment about B* that is given approximately by

M:z’@?xl-i%—ﬁgji% (30F-A@XT-F+7xI-A)
R 2RS z 2
+15[1 = 7G- A1 X I -7 —6A % I -f) )

For the sake of giving it a name, body E is assumed to be the
Earth so that

k@ = gravitational parameter of Earth

R = distance from E* to B*

P = unit position vector from E* to B*

I = inertia dyadic of B relative to B*

J, = zonal harmonic coefficient representing Earth’s

oblateness

mean equatorial radius of Earth

unit vector in the direction of Earth’s geographic
North pole

>y
®

Derivation

The derivation of Eq. (1) that follows makes extensive use of
Ref. 1. Equations from Ref. 1 are denoted by three numbers
separated by two decimal points. By way of example, an
equation numbered (2.18.1) indicates the first equation appear-
ing in Sec. 18 of Chap. 2 in Ref. 1.

Glandorf? secks a method for constructing gravitational
moment expressions from any gravitational potential function.
Equation (2.18.1) is such a method:

M= —17%VyVzV(R) 3]

where V(R) is a gravitational potential function for a particle
of unit mass expressed in terms of a position vector R, and v,
denotes differentiation with respect to R. The cross-dot prod-
uct, -, is defined in Ref. 1 and will be discussed in more detail
below. Our first task in evaluating Eq. (2) is to obtain an
expression for the gravitational potential.

Gravitational Potential
Equation (2.13.14) is an expression for an axisymmetric
Earth’s gravitational potential for a particle of mass m. The
expression contains an infinite series of zonal harmonic co-
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efficients. Since we wish to consider only the zonal harmonic
representing Earth’s oblateness we can truncate the series and
write, for a particle P of unit mass,

(o) R@ 2 { }
I’@—‘—p [1—( ,)szz(sx) 3
where

ke = gravitational parameter of Earth
Rg = Earth’s mean equatorial radius

p = distance from E*, the Earth’s mass center, to
particle P (

J, = zonal harmonic coefficient representing Earth’s
oblateness

P, = Legendre polynomial of order 2
geographic latitude of P
shorthand notation for sin\

Sx

The Legendre polynomial, P,(S,), is obtained from Eq.
(2.13.4):

Py(S)) = 138y — 11 = % {[3(p - A/p? — 1) C))
where
p = position vector from E* to P
A - = unit vector in the direction of Earth’s geographic
North pole

Thus, by substituting Eq. (4) into Eq. (3), we get

)

p’ p? ©

1 1
Vo = e [;_EJZR(ZD [

Differentiating the Gravitational Potential
Now, Eq. (2) requires expressing Vg in terms of R and
differentiating with respect to R. However, p. 150 of Ref. 1
mentjons that ‘‘differentiating ¥ (p) with respect to p and then
setting p equal to R is precisely the same . . .”’. We can rewrite
Eq. (2) as

M= —1 Vi ViVR)= —1*[V,V,V(®),-r ©®

Equations (2.10.5) and (2.10.6) illustrate how to differentiate
terms in which the scalar p appears. Taken together they
produce the following result:

1 p
Vp;( = _xp(x+2) M

The first differentiationi of the gravitational potential with
respect to p yields a vector.

p 1 6(p - 7) R
VoVe = e {_;“EJZRé [ e V,(p - 7)

15(p - Ay’p 3pB
-t 8
o7 3 )

But 7 is independent of p and we can use Eq. (2.9.7) to write
v,(p-W)=U-h=h )]

where U is the unit dyadic. Substituting Eq. (9) into Eq. (8)
yields the gravitational force acting on P.

6(p -MA  15(p -AYp SpB

5 7 ts

D p D

VpV® =pe [—E—E JzRé {i

(10)
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The second differentiation of the gravitational potential with
respect to p yields a dyadic.

3p_U 1 30(p - A)Ap
A SR
6nR  30(p - A)ph . p U
# S s (- )
15pp 3U
”'T*F} an

Cross-Dot Identities

At this point we can form the gravitational moment with Eq.
(6) by using the dyadic in Eq. (11), after developing identities
involving the symmetric central inertia dyadic, /, and the
cross-dot product. The cross-dot product, -, is defined on p.
156 of Ref. 1. For two dyads, u,u, and v,v,,

(i) ' (viv) = (U X v)) (- v) (12)

The cross-dot product obeys the distributive law when applied
to dyadics.

(818, + tity + ) Ty + vy + ) = 818, wy
+ S1s2>-( Vv, + e+ tltz)'(uluz + tlt2>'< ViV, + e e (13)
I can be written in terms of inertia vectors, I; (j = 1,2,3).
I=1b+Lb,+ Lb, 14
where b ;(J = 1,2,3) are any mutually orthogonal dexterous unit
vectors fixed in B. Inertia vectors can in turn be written in terms
of inertia scalars.
I =1;b, + Inb, + I;3b, =123 15)

We are now in a position to perform the cross-dot product with
I and U. Using Eqgs. (12-15),

17U = b, + Lb, + I;b3)* (b,b, + b,b, + bsby)
=5 xb +L,xb,+I;xb,
= I,b, X by + 3By X by + L,,B, X b, + I,;b, X b,
+ Iy by X by + Ib, X by (16)
However, inertia scalars have the property of symmetry
Iy =1y G, k=123) an
and, by the definition of a vector cross product,

UuxXyv=—vxu (18)

By substituting Eqgs. (17) and (18) into Eqgs. (16), it can be seen
that

I*U=0 : - 19)

Another useful identity can be obtained with the help of Eq.
(14). For any dyad u,v, we can write
I “uw, = (I,b, + Lb, + Lby) “uyv,

Iy X up By - v) + L X u) by v) + Iy X u) (b - v)

—u X (Ib,-v, + Lb, v, + Lby-v))

—uy X1y 20)
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Equatoriat A
plane E > Ny

Fig. 2 Orbit of B” about E.

Gravitational Moment

Now we can replace p with R in Eq. (11), substitute the result
into Eq. (6), and make use of identities in Eqgs. (19) and (20)
to obtain

(73]

JRE
M=E% .3 +0+F22T0

=R SRS [30GF-AYA X I-?—6h

X I -7 +30¢ AP X -h—15F AT X -F+0)

=3£3@i'><! ;‘+l’-®2-21§® {30F-AAXT-P+FxI-P)
+15[1_7(?.ﬁ)2]?xl-f'—6ﬁ><l'ﬁ] 2D

where 7 is the unit position vector from E* to B*.

The derivation of Eq. (1) is now complete. Any valid gravi-
tational potential function for a particle of unit mass can be
used with Eq. (2) to produce an expression for gravitational
moment about a body’s mass center. For the case of an oblate
spheroid, Eq. (2) has been shown to produce a simple result that
does not restrict one to expressing gravitational moment in any
particular unit vector basis. Notice that for J, =0, Eq. (1)
reduces to Eq. (2.6.3), which is the expression for the gravita-
tional moment exerted on B by a sphere (or particle) with the
mass of the Earth.

Example

Employing Eq. (1) to express M in a particular basis can
quickly become a chore if done algebraically. However, imple-
menting the equation on a computer as part of a numerical
simulation is fairly easy. In order to demonstrate the use of Eq.
(1) and produce numerical results here, let us consider a very
simple example.

Assume that B*, the mass center of B, is in a circular orbit
which is inclined relative to Earth’s equatorial plane. Figure 2
shows a reference frame L in which unit vectors /,, /,, and I; are
fixed. Unit vector 7, is identical to #. Unit vector , is orthogonal
to 1, and lies in the plane of the orbit of B*, while I is
perpendicular to the orbit plane. Unit vectors #,, 1,, and #1; are
fixed in frame N such that 7, lies in the Earth’s equatorial plane
in the direction of the vernal equinox, #, also lies in the
equatorial plane, and 71, is identical to #, which is perpendicular
to the equatorial plane.

Frame L is brought into a general orientation in N by a
body-two, 3-1-3 rotation sequence (Ref. 1, p. 424). Unit vectors
1;,1,, and 1, are initially aligned with A, #,, and #;, respectively,
and the preceding rotation sequence requires simple rotations
of amounts @ (longitude of ascending node), / (inclination of
the orbit plane), and 6 (argument of latitude) about 73, I, and
1,, respectively.
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The direction cosine matrix on p. 424 of Ref. 1 allows us to
write

= fl3 = Sngil + S1C972 + C,"l‘3 (22)

where §; is shorthand for sin 7, C;is short for cos i, etc. Since
?=1,, we also have

;’ M fl = SiSG (23)
Unit vectors b,, b,, and b, are fixed in B, are assumed to be
parallel to central principalaxes of inertia of B, and are further

assumed to be parallel to 7, 1,, and ;. Thus, we can express /
as

I =1,,b,b; + I,b,b; + 153b3bs
= Inyhl + Lobl + Lylil, (24

From Eqgs. (22) and (24) we can see that
I-7 =185, + L,SCl, + I,Cl, 2%

and

AXI-f=(— IZZ)SiCiceil + () — L)S,CSel,

+ (I — 1)) S?SCyl, (26)
similarly
FXT-f=01 —I;CL + L,S,Cl, 27
PXI-#=0 (28)
axI-#=0I +I,(Cl,— SCyly) (29)

After substitution of Egs. (23) and (26-29) into Eq. (1), we find
that the body-basis measure numbers of M are

- 5 3uahRE

M-y =M1 = 8L, — 1)SCC, (30)
- 2 12pgRE

M by=M-L="FEZ00, ~1)SCS, (D
2 o 12ughRE 2

M-by=M 1= &80, - 1)S/8,¢, (32

In order to obtain an appreciation for numerical values of
these measure numbers, we will consider central principal
moments of inertia that are commensurate with a vehicle the
size of a space station, and a radius of a conceivable circular
space station orbit. The following values of astronomical
constants for Earth, central principal moments of inertia, and
orbital parameters are used:

3.986 x 10° km?/s?

hp =

J, =1.08x107

Rg = 6378 km

I, = 1.355x 10® kg-m?
Iy = 1111

Ly =1l

i =28.5deg

R = 6700 km

We find that the measure numbers of the gravitational
moment exerted about the mass center of our vehicle would
vary with argument of latitude in the following manner:

(0.1991 N-m)C,
(0.7964 N-m)S,
0

M - b,
M - b,
M‘b3
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These numerical values become significant when one consid-
ers that moments of aerodynamic forces about the space station
mass center are predicted to be in the neighborhood of 2 N-m,
and the first term in Eq. (1) can produce values near 3 N-m for
orientations of B in L other than the one considered in this
example.

Conclusions

A method for obtaining vector-dyadic expressions for the
gravitational moment about a body’s mass center has been
demonstrated. The demonstration has been accomplished by
deriving an expression for the gravitational moment exerted by
an oblate spheroid. The contribution of Earth oblateness to the
gravitational moment exerted on a body has been evaluated
numerically in a greatly simplified example. This contribution
is significant in comparison with other external moments, such
as the one produced by aerodynamic forces.
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Tracking Accuracy for
LEOSAT-GEOSAT Laser Links

Ramani Seshamani,* D. V. B. Rao,* T. K. Alex,}
and Y. K. Jain}
ISRO Satellite Centre, Bangalore, India

Introduction

HE importance of laser-based intersatellite communica-
tion links (LASERCOM) has emerged recently. Keeping
in mind its advantages, several workers'™ have reported on
the antenna diameters and the pointing, acquisition, and
tracking (PAT) accuracy requirements of laser intersatellite
links. Particularly with regard to laser-diode-based intersatel-
lite links, Boutemy et al.> have assumed a pointing accuracy
of 1 urad for the low-Earth-orbit to geostationary-orbit link.
Popescu et al.> have postulated a beam divergence of 3 urad.
As the actual values of the beam divergence and the
tracking accuracy requirements for various antenna diameters
and signal-to-noise ratios (S/N) have to be known for design
of the LASERCOM, the values are calculated using the
Gaussian beam characteristics of the laser.

Methodology

Since the laser beam has a Gaussian intensity profile, the
following relations* hold:

w(z) = will + (Az/nw})?] (N
0 =2/nw, (2)
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